Оганесон – как странный сон

Первые 117 элементов таблицы Менделеева были нормальными. И вот появился 118-й.

Нихоний (Nh), московий (Mc), теннессин (Ts) и оганесон (Og) появились в таблице Менделеева в 2016 году. Фото: Antoine2K.

Оганесон (Og), в девичестве унуноктий, в 2016 году получил имя в честь Юрия Оганесяна, научного руководителя Лаборатории ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований в Дубне. Это второй элемент, нареченный именем еще здравствующего человека, после сиборгия (Sg), названного в 1997 году в честь живого Гленна Сиборга (1912–1999).

Окончание -он свидетельствует о принадлежности оганесона к благородным газам – группе элементов, в которую также входят гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe), радон (Rn). Да, гелий без надлежащего окончания – может, потому что, когда набираешь полные легкие гелия, голос начинает звучать не слишком благородно.

Оганесон – самый тяжелый на сегодняшний день элемент периодической таблицы, его атомная масса – больше 294 атомных единиц массы, что почти в 25 раз тяжелее типичного изотопа углерода из вашего бренного тела. В отличие от углерода искать оганесон у себя под мышкой или в жировых складочках не стоит – в природе он вообще не встречается, и за все время было искусственно синтезировано всего несколько атомов этого радиоактивного элемента, каждый из которых просуществовал меньше миллисекунды.

В связи с этим, говоря о свойствах оганесона, ученые полагаются исключительно на теоретические предсказания. И многие из этих предсказанных свойств довольно странны.

Распределение плотности электронов в трех благородных элементах без учета релятивистских эффектов (вверху) и с учетом оных (внизу). Согласно расчетам, в оганесоне электроны не ограничивают себя орбиталями, а формируют равномерное облако Ферми-газа.

Если руководствоваться вычислениями, основанными на классической физике, то электроны оганесона должны располагаться в окружающих атомное ядро оболочках, как у почти всех нормальных элементов. Однако оганесон – элемент сверхтяжелый, а значит, из-за большого заряда ядра его электроны разгоняются до таких значительных скоростей, что возникает необходимость учитывать теорию относительности Эйнштейна, и если включить ее в расчеты, то получается странная штука: вместо дискретных электронных оболочек электроны витают в более-менее равномерно размытом облаке электронного газа!

Благородные газы еще называют инертными, потому что они химически неактивны и участвуют в реакциях лишь в экстремальных условиях, как при апокалипсисе. Оганесон – исключение. Из-за необычного распределения электронов он легко отдает и принимает электроны, а значит, может быть химически реактивным. Получается, что оганесон – парадоксально неинертный благородный газ.

К тому же он вовсе и не газ в привычном понимании этого слова. В «размазанном» состоянии облака электроны оганесона легко поляризуются, а значит, атомы элемента будут связываться друг с другом прочными вандерваальсовыми взаимодействиями. Вместо того чтобы отскакивать друг от друга, словно футбольные мячики, как в типичных газах, атомы оганесона при комнатной температуре, вероятно, будут стремиться слипнуться в твердое вещество! Это уже не благородный газ, а благородная твердь какая-то.

Протоны ядра оганесона тоже могут вести себя нестандартно. Обычно протоны отталкиваются друг от друга в силу положительного заряда, но не разлетаются благодаря так называемым ядерным силам, в основе которых лежит сильное взаимодействие – намного более сильное, чем кулоновские взаимодействия между зарядами. Однако у оганесона протонов аж 118 штук, поэтому их объединенные кулоновские усилия могут частично преодолеть ядерную силушку, в результате чего в ядре сформируется пузырь! В центре ядра протонов окажется меньше, чем на периферии.

А вот нейтроны ядра, как и электроны вокруг ядра, смешаются в Ферми-газ, предсказывают ученые.

Юрий Оганесян – второй человек после Гленна Сиборга, именем которого еще при его жизни назвали химический элемент. Фото: ОИЯИ.

Сам Юрий Цолакович Оганесян подобные прогнозы относительно его тезки-элемента находит удивительными. Для их проверки необходимы эксперименты, говорит он, с предвкушением потирая руки.

Но куда более удивительными могут оказаться следующие, пока что неоткрытые химические элементы. Согласно недавно предложенной модели, ядра с массой выше 300 могут представлять собой совершенно иную, непривычную нам форму материи, которая будет состоять не из протонов и нейтронов, а из верхних и нижних кварков, собирающихся в какие-нибудь иные конфигурации. Подобная материя может стабильно существовать в недрах нейтронных звезд и потенциально могла бы стать намного более удобным источником энергии, чем ядерный или термоядерный синтез. Так что с нетерпением ждем, когда наши ученые в Дубне синтезируют невероятный и чудной 119-й элемент – батрахоспермумий.


Текст: Виктор Ковылин. По материалам: Science News, Химия и жизнь
Научная статья: Physical Review Letters (Jerabek et al., 2018)

Все права на данный текст принадлежат нашему журналу. Если вам понравилось его читать и вы хотите поделиться информацией с друзьями и подписчиками, можно использовать фрагмент и поставить активную ссылку на эту статью – мы будем рады. С уважением, Батрахоспермум.

Вас также могут заинтересовать статьи:
Почему плутоний – Pu?
Географическим центром Северной Америки случайно оказался город Центр
Литр космоса, пожалуйста

Комментарии:

Высказать свое мудрое мнение